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Abstract. The representation of the transitional state of atwo-levelsysteminteractingwith 
the radiation field on the complex plane provides a point of comparison between 
polarization (in the optical sense) and atomic transition processes. This corresponds to the 
Poincard representation of polarization in optics. Polarization and dynamics are two aspects 
of an interaction process. The point on the complex plane obeys a daerential equation 
which is equivalent to the gyroscopic equation of motion for vector r. The solution is 
obtained for the general non-resonant case. It is only the special case of resonance that 
admits of a simple geometrical representation of z as a point on the complex plane obtained 
by stereographic projection. This representation brings out the intimate connection 
between the z representation and the r representation. The dynamical problem can also be 
representedin terms of the z transformation which corresponds to a unitary transformation. 

1. Introduction 

The state of a two-level atom interacting with radiation can be represented by a unit 
vector r introduced by Feynman er a1 (1957). The components of the vector are 
analogous to the Stokes parameters which are components of a unit vector S specifying 
the state of polarization in optics. The parametric state of the atom can also be 
represented by a point on the complex plane in exactly the same way in which optical 
polarization can be represented on the complex plane (Poinark representation) (Jauch 
and Rohrlich 1955). The Schrijdinger equation in Hiibert space is represented by a 
differential equation for the point z on the complex plane and by the gyroscopic 
equation for r in ‘spin space’. There is apparently an asymmetry between optics and 
atomic dynamics: there seems to be no general equation of motion for S. We shall only 
assert here that Maxwell’s field equations for the propagation of an electromagnetic 
wave through a dielectric medium can be expressed as a gyroscopic equation for the 
vector S. Polarization and dynamics thus appear as two alternative modes of describing 
an interaction process in optics as well as in atomic dynamics. 

2. Quantum dynamical law on the z plane 

The wavefunction ’? is a superposition of the two eigenstates of energy Ya, Yrb : 

1015 



1016 H G Venkatesh and G G Sarkar 

The eigenstates belong to values of the energy Ea and Eb(EQ Eb). We assume that the 
atom has no permanent dipole moments in the eigenstates so that V,  = v b ,  = 0 where 
V is the interaction potential. 

The Schrodinger wave equation leads to the two equations 

iha = aEa + bV, 
ihb = bEb 4- av , , .  

Defining three quantities wl, w2, w3 by 

hwl = VQb + Vba  

hw2 = i( Vab - v b a )  

hw3 =Ea -E, = hwo 
(2.2) 

the equations reduce to the single equation: 

d - b u  =iwoab-~i(wl+iw2)a2+$(wl-iw2)b2 (2.3) 

(2.4) i =iwoz+$w+-$w-z 

where z = -b/a and w* = w1 *iw2. This equation is equivalent to the Schrodinger 
equation in Hilbert space and the gyroscopic equation for r in r space introduced by 
Feynman et a1 (1957). The relation between z and r is given by: 

which leads to 
1 2  

The reciprocal relations are 

Z+Z" i(z -z*) zz"-l 
zz*+1' r3 = -- r 2 = -  I +zz* ' TI=-- l+ZZ*' 

(2.6) 

The real and imaginary parts of z may be separated out by writing 
z=(u+iv) (2.7) 

where 
-Y. - Ym 

. L  2, =- ' I  U=- 
1 + r3' l+ r3 '  

The associated equation of motion of the point z can also be obtained from the 
gyroscopic equation and the z - r  relation (2.5). 

3. solution of the z equation: interaction of the two-level system with radiation 

In Darticular for the interaction of the two-level system with electromagnetic radiation: 

(3.1) 
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for the Am = f 1 transitions and 
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(3.2) 

for the Am = 0 transition, where y = &,, p + =  (pI +ip2), ply pz, p3 the dipole moment 
operators, pE = p3, w the radiation frequency and ;Eo the amplitude of the field (in 
(3.1)) and E the field in the 3-direction in (3.2). Let us assume the solution of the z 
equation in the form 

z = A eiu. 

The substitution of this in the z equation gives 

Q = wt 
and leads to the differential equation for the amplitude: 

A +iA( w - WO)-ipA2+ip = 0 

where 

for Am = f 1  

pEab/2A for Am = 0. 

Simple integration gives 

where 6 is a phase constant and 

fl=[(n’,+(W-wo)2]1/2 

(3.3) 

(3.4) 

aE = (w: + w y 2  = &/2A (3.7) 

for Am = f 1. From now on we shall write expressions for Am = *1 only. Analogous 
expressions can easily be written out for Am = 0. From (2.6): 

f i E  

R i2 IndW ; wo)[l -cos(flt + S)] cos wt +- sin(i2t i- S) sin wt rl = - 

(3.8) 

3.1. The case of resonance (w - wo = 0) 

Initial conditions: we consider the following two initial states specified by the values of 
r3 or z at t = 0 when the radiation field is applied: 

t = O ,  r3=-1, Z O = ~  (ground state) (9 
(ii) t=O, r3=+l,  zO=O (excited state). 

(3.9) 
(3.10) 
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For the absorptive process (b  + a )  with the initial.condition (i), 6 = 0; and for the 
emissive process (a  + b) with the initial condition (ii), 6 = T. Thus for the absorptive 
process: 

(3.11) z = i cot(&) e'""' 
and 

a = sin ($M)e L i w  2 o r 

b = -i cos(&&) eiiwclc. 
(3.12) 

(3.12) is correct up to an arbitrary phase constant. For the emissive process: 

z = -i tan($aEt) e'"~' 

a = cos(;aEt) eS.'wor 

b = i sin(&t) etiwot. 

The vector components are given by 

r1 = *sin(SEEt) sin(w,t) 

rz = 'F sin(&t) cos( wot) 

r3 = 'F cos(&t), 

the upper signs correspond to absorption and the lower to emission. 

(3.13) 

(3.14) 

(3.15) 

4. Tmnsformations on the complex plane 

The transformation of vector r into vector r' is effected by the unitary transformation 
T=(,"-,b:) (Venkatesh and Dixit 1971). Expressing the components of r and r' in terms 
of z and z', we have 

- ( 22' -(z'z'* 22*' - 1) 1 1 z'z'*- 1 

- 1 -b* zz*--l 
-m(ba a* >.( 22 

which leads to the two equations 

1 (aa*zz*+ bb*- abz*- a*b*z) 
Z'Z'* -=- 

z'z'*+l zz*+1 

[ab*(zz*-1)+a2z*-b*2zl. 2'* 1 
2'2'*+1 Z Z * + l  
-=- 

Dividing the fmt equation by the second: 

aa *zz * + bb* - abz* - a *b*z 
ab*(zz*- 1)+a2z*-b*'z ' 

z'= 
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The right-hand side can be factorized as follows: 

a*z -b  az*-b* 
b*z+a  az*-b*' 
-- 

Thus the transformation of z is given by 
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a*z--b &+=- 
b*z+a'  (4.1) 

This corresponds to the transformation of r to r' by the unitary matrix T. 

mation (see appendix). 
Alternatively, using the transformation 0+3 we obtain directly the law of ztransfor- 

Thus: 

z I = L  1' +iri  - - 2a*br3-b2(rl -ir2)+u*'(rl+ir2) 
1 -((aa*- bb*)r3 +ab(rl -irz)+a*b*(rl +ir2) 

a * b (zz * - 1) - b2z * + a *'z 
bb*zz*+aa*+abz*+a*b*z 

1 - r& 

- - 

which can be factorized as already mentioned to give (4.1). 
If the initial state (state of excitation or the ground state) is denoted by zo, we have 

(4.2) 

If we consider the initial condition zo+cO, the transformation (4.2) gives z'= a*/b*, 
and if the initial condition is zo = 0, z = -b/a. In either case the process is a -j b. The 
following transformation is obtained from (4.1) by putting ZO= -l/z;: 

-bzg - a* 
azg-b* * 

= (4.21 

This corresponds to the process b -j a. 
The formula (4.2) is useful in treating problems of interaction of radiation with 

matter. For instance in the photon echo problem where one considers the response of a 
two-level system to a sequence of pulses, 2, resultingfrom n radiation pulsesisgiven by 

where 

T=T1T2T3.. . T, 

The proof proceeds by induction; the calculations being omitted. Exactly similar 
considerations are valid for the determination of the state of polarization of an 
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electromagnetic wave which is propagated through a series of dielectric layers. T, 
represents the action of optically active and T+ that of doubly refracting dielectric media 
(see (5.2)). 

H G Venkatesh and G G Sarkar 

5. Geometrical meaning of the z transformation 

n e  z transformation (4.1) is the analytic counterpart of the motion of a point z on the 
complex plane obtained by the stereographic projection outlined in this section (see 
figure 1). 

P i3 

Also the intimate connection between the z formalism outlined in the foregoing and 
the r formalism of Feynman et a1 is seen from the geometrical considerations. The 
expressions (3.15) can be combined into a single set of expressions for the unit vector r: 

rl =sin 8 cos C$ 

r2 =sin 8 sin 4 
r3 = cos 8 

where 8 = REt - ?r, C$ = wot + v/2 for the process b + a and 8 = aEt, 4 = wot f Tf 2 for 
the process a + b. The transformation T is given by 

T = T(4)T(” 
where 

Here 6’ =a,? is measured from the positive z axis. T represents a rotation in r Space 
corresponding to the z transformation (4.2) or (4.2’). 

Consider the unit sphere and a unit vector r touching the sphere at Q. The Point 
R(u, U> is the stereographic projection of Q with P as the pole of projection. Here we 
have three representations of a parametric state-by means of: (i) vector r whose 
components are rl , r2, r3 ; (ii) point Q on the unit sphere whose coordinates are 11 , r29 r3; 
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and (iii) point R on the complex plane with the complex coordinate z. They correspond 
respectively to representations of optical polarization by Stokes vector, or by a point on 
the Poinwe sphere or by a point on the complex plane. From geometry OR = r’ is 
given by 

r’ = cot(8/2) 5.3)  
e being measured from the line OP. The coordinates of R on the complex plane are 

U = r‘ COS 4 = cot(8/2) COS 4 
U = r’ sin d = cot(8/2) sin 4. 

z = U +iu = cot($e) ei+. 

(5.4) 

Thus 

The gyroscopic equation of motion of r can be written as 

i+=iw3r+-iw+r3 

i3= wlr2-w2rl 

and from the angle representation (5.1) 

w, = - e  sin 4 
w2 = d cos 4 (5.7) 

W3 = 4. 

Differentiating (5.5) and substituting from (5.7) for 6 and 6 we again obtain the 
associated equation of motion for z: 

2 i =iw3z+$w+-$w-z . 

The connection with physics is made by finding the angdar velocities from the 
Schrodinger equation as we have shown in 0 2 for z or as shown by Feynman eta1 for r. 

Comparing (5.5) and (3.11) 

for Am = *l YE0 e = n,t = - t 
2h 

(5.8) 

6. Surnmary and discussion 

The vectorial method of Feynman et aZ for solving the two-level problem introduces the 
vector r formed by products of the probability coefficients a, b (and their complex 
conjugates). The z representation outlined in this paper introduces the ratio z, of a to b 
(and of their complex conjugates) for solving the same problem. m e  latter method 
leads to a differential equation for z, equivalent to the Schrodinger equation, and a 
straightforward analytical solution of the two-level problem. The components of the 
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vector t and the T matrix are obtained for the non-resonant case and the solutions for 
resonant absorption (and emission) obtained as special cases. 

There is a very close analogy between optical polarization and the dynamics of an 
atom interacting with radiation. The State of polarization in optics can be represented 
by a unit vector (Stokes vector) or a point on the unit sphere or a point on the complex 
plane obtained by stereographic projection (PoincarC representation). halogously 
the transitional state of an atom at any instant of time can be represented by a vector 
and, as has been shown here, by a point Q on the unit sphere at which the vector touches 
the sphere and by a point on the z plane obtained by a stereographic projection of Q. 
is given by -b/a or a*/b* obeying the same differential equation. The geometrid 
picture of the dynamical process obtained in this way brings out clearly the relation 
between the method of Feynman et al and the complex-plane method. 

The z transformation (4.2) of the initial state zo corresponds to the transformation 
of t at t = 0 represented byzka, = *(; -4) by the unitary transformation (t :<*) and gives 
the solution of the dynamical problem. The substitution of this transformation in the 
dBerential equation for z gives the transformation in terms of the interaction. The 
transformation is similar to the contact transformation in Lagrangian mechanics and 
determines the time evolution of the parametric state in accordance with the differential 
equation. If the unitary transformation TI transforms zo to z1 and T2 transforms z1 to 
z2, then it is easily seen by direct substitution in (4.2) that TIT2 transforms zo to z2 
directly. The z method is particularly well adapted to the treatment of the problem of 
sequential inputs in atomic transition processes as well as the propagation of radiation 
through a multilayer dielectric. 

An assembly of atoms interacting with the thermal field of a crystal lattice and 
making stepwise transitions in a random manner (Brownian motion) is represented by a 
cloudof points on the z plane which thus provides a kind of phase space for a statistical 
assembly of two-level systems. 

The main interest of course is the optical analogy. The parallelism between optical 
polarization and resonant interaction of a two-level system with radiation as regards the 
basic kinematical and dynamical structure enables one to exploit the formalism of the 
one to the solution of specific problems in the other (Venkatesh and Roy 1971). In fact 
the method outlined here provides an important point of comparison between optical 
polarization and the dynamics of an atom which is in an absorptive or emissive state. But 
the significance of this parallelism is far-reaching. It points to the quantal nature of the 
radiation field (Venkatesh and Ram 1976) and leads to the important connection 
between spin and polarization. 

It is emphasized, however, that the analogy with optics is true only for the reso" 
case of absorption (or emission) under the influence of radiation and it is for this case 
that the geometrical picture is valid. The solution for r in the non-resonant case has a 
fairly complicated geometrical representation in r space and perhaps no optical 
analogue and no simDle remesentation on the complex plane. 
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Appendix 
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The following is the transformation law r+ r’: 

r’ = Trt 

or 

r: r{- ir i  - a -b* r3 rl-ir2)(a* b*) 
(r{+iri  -r; ) - ( b  a* )(rl+irz -r3 -6 a 

which gives explicitly 

r{ = $[(a’+ a*’) -(6’+ b**)]rl +$[(a*’- U’) +(b’- b*’)]rZ+(a*b + ub*)r3 

rk =$[(a’- a*’)+(b’- b*’)]r, + ~ ( ~ * ’ + a ’ ) + ( b ’ + b * ~ ) ] r ~ + ( a * b - u b * ) r ~  

r: = -(ab+a*b*)rl+i(ab-a*b*)rz+(aa*-b6*)r3. 

The transformation matrix is O+3. 
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